BL-D电动滚筒驱动卡

使用手册 User Mannual

版本号 v2.1 对应驱动卡软件版本: V2-20-2

2020年3月10日

宁波市镇海格瓦传动设备有限公司

更新记录 Update Record

序号 DCR#	版本号 Ver.	日期 Date	备注 Remark
1	1.0	2019.9.19	创建
2	2.0	2020.2.27	1. page2 "闭环"的定义修改 2. 功能修改(<mark>对应驱动器软件版本V2-20-1</mark>) a) DIP拨码第7位功能 <mark>新增</mark> 为24V/48V切换
2	2.1	2020.3.10	1. 修订2020.2.27发布版本Ver. 2.0中的错误: 驱动器软件版本V2-20-1无24V/48V切换功能,该功 能应该是驱动器软件版本V2-20-2的新增功能

常用的术语 Technical Terms

直流无刷电机 电机由永磁转子和绕有线圈的定子组成,这种电机具有结构简单、可

靠性高、稳定性好、效率高、适应性强等优点,因此得到了广泛的应

用。

霍尔传感器 由于无刷电机取消了碳刷,因此电机自身不能运行,需要依靠外部的

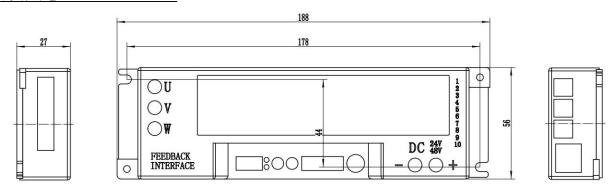
驱动卡运行,霍尔传感器就是安装在电机内部用来向驱动卡反馈位置

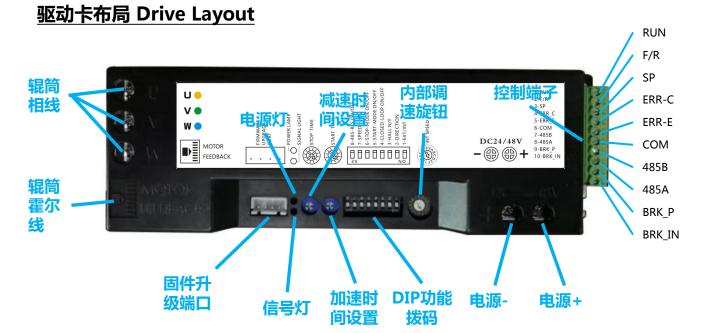
信号的器件。

LED 发光二极管,用来指示驱动系统的状态。

PNP/NPN 有效控制信号的逻辑电平: NPN表示低电平有效,即接DC-有效;

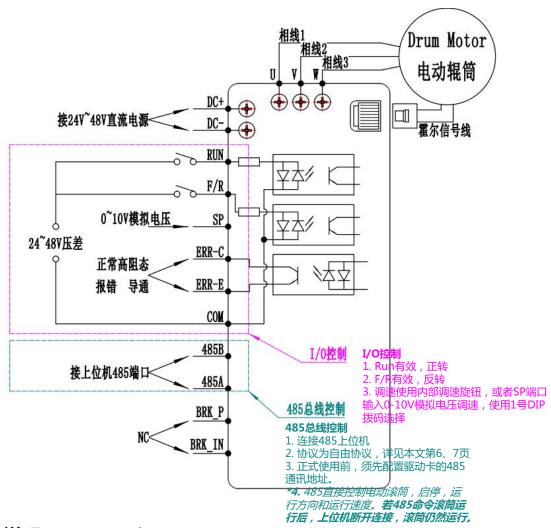
PNP表示高电平有效,即接DC+有效。


PLC 工业可编程逻辑控制器


速度开环/闭环 速度开环,滚筒转速随负载加大而降低;

速度闭环,负载在滚筒额定扭矩以内时,滚筒转速不随负载变化而变

化


安装尺寸 Dimensions

名称	功能说明	
电源+ & 电源- 直流电源输入		
控制端子	控制信号I/O口,部分功能与DIP拨码配合使用	
DIP功能拨码	功能拨码	
内部调速旋钮	16档调速,与DIP拨码配合使用	
加速时间设置	设置启动加速时间,与DIP拨码配合使用,逆时针减小,顺时针加大	
减速时间设置	设置停止减速时间,与DIP拨码配合使用,逆时针减小,顺时针加大	
电源灯 & 信号灯	电源指示灯&设备状态指示灯	
固件升级端口	固件升级插孔	
辊筒相线 & 滚筒霍尔线	电动滚筒相线和霍尔线插头	

接线说明 Wiring Diagram

拨码功能说明 DIP Function

编号	名称	功能	OFF	ON
1	INT/EXT	内外部调速切换	内部调速旋钮	SP端口输入0-10V模拟电压
2	DIRECTION	滚筒默认转向切换	-	-
3	HALL Y/N	有感/无感切换	有感	无感
4	CLOSED-LOOP	开环/闭环切换	开环	闭环
5	START TIME	加速度设置	最大加速度启动	打开后调节加速时间旋钮 , 在0-2.5s范围内设置加速时间
6	STOP TIME	减速度设置	惯性停止	打开后调节减速时间旋钮 , 在0-2.5s范围内设置减速时间
7	24V/48V	电源电压切换	24V	48V
8	485 RES	485终端电阻开关	不接终端电阻	接入终端电阻

滚筒/驱动卡状态表 Status Description

POWER LED状态(红色)	控制器状态	状态说明
熄灭	断电	-
常亮	电源接入	-

Signal LED状态(绿色)	电辊筒/控制器状态	状态说明
熄灭	待机	-
常亮	滚筒正常运行	-
闪一下停二秒,循环	电源异常	电源欠压或过压,超出可工作范围
闪二下停二秒,循环	霍尔异常	传感器受到电磁干扰或损坏,状态 异常
闪三下停二秒,循环	电机堵转	电机无法转动,有大负载或被卡住
闪四下停二秒,循环	预留	-
闪五下停二秒,循环	电辊筒过热	电辊筒温度高于保护阈值
大于5下,循环	其他驱动卡或辊筒故障	-

常见异常处理办法

电辊筒/控制器状态	状态说明
电源异常	使用万用表测量驱动卡电源端子的电压,并观察启动和运行时电压是否有下降,下降范围是否在允许范围之内;若有明显压降的,请缩短电源与驱动卡间电缆长度,或加粗电缆线径
霍尔异常	切换DIP拨码3号为ON
电机堵转	1. 切换DIP拨码3号为ON 2. 若1不能解决联系厂家
其他驱动卡或辊筒故障	联系厂家

485协议 485 Protocol

基本参数

No	项目	参数	备注
1	最大站点数	127	地址通过地址设定帧设置
2	通讯格式	格式A :38400 , N,8 , 1	默认为格式A
3	校验方式	帧校验	
4	终端电阻	120Ω	通过终端电阻DIP开关选择是否用终端电阻

运行参数设定帧

No	项目	参数	备注
1	参数设定起始符号	85H(或95H)	*起始字节为95H时不返回运行参数应答帧
2	方向、地址编号	B7=0, B6=方向, B5-B0=地 址编号低6位	
3	运行速度	B7=0, B6-B0=0~127	速度 =(B6-B0)*10 RPM (300 RPM ~1270 RPM)
4	预留	B7=0, B6-B0=0~127	
5	预留	B7=0, B6-B0=0~127	
6	扩展位	B7-B5=0, B4 = 0B3=地址号 高1位B2=0 B1=0 B0=0	
7	预留	B7=0, B6-B0=0~127	
8	校验符	Byte 2-7 XOR	

备注:参数起始字节是唯一的,后续字符中不会出现相同字符。起始字节的B7=1,后续字符中B7=0。

运行参数应答帧

No	项目	参数	备注
1	小车应答起始符号	99H	
2	应答的小车编号	B7=0, B6-B0=小车编号	
3	应答内容	B7-B6=0, B5=电机运作失 败, B4=参数之前无动作指令, B3=动作指令前无参数, B2= 霍尔错误, B1=过流保护, B0=0	有错误或保护置1,无错误或保护置0,。
4	校验符	Byte 2-3 XOR	校验符

备注:参数起始字节是唯一的,后续字符中不会出现相同字符。起始字节的B7=1,后续字符中B7=0。

运行命令帧 (广播, 无需应答帧)

No	项目	参数	备注
1	运行命令起始符号	8AH	
2	寄存器组1	B7=0 , B6 -B0=地址编号7-1	
3	寄存器组2	B7=0 , B6 -B0=地址编号15-9	
4	寄存器组3	B7=0 , B6 -B0=地址编号23-17	
5	寄存器组4	B7=0 , B6 -B0=地址编号31-25	
6	寄存器组5	B7=0 , B6 -B0=地址编号	
		32,24,16,8	
7	变化标示 (序列号)	B7=0,B6-B0=递增	仅仅标示序号
8	校验符	Byte 2-7 XOR	

No	项目	参数	备注
1	小车应答起始符号	8BH	
2	寄存器组1	B7=0 , B6 -B0=地址编号39-33	
3	寄存器组2	B7=0 , B6 -B0=地址编号47-41	
4	寄存器组3	B7=0 , B6 -B0=地址编号55-49	
5	寄存器组4	B7=0 , B6 -B0=地址编号63-57	
6	寄存器组5	B7=0 , B6 -B0=地址编号	
		64,56,48,40	
7	变化标示 (序列号)	B7=0,B6-B0=递增	仅仅标示序号
8	校验符	Byte 2-7 XOR	

以此类推直至127个站点

备注:参数起始字节是唯一的,后续字符中不会出现相同字符。起始字节的B7=1, 后续字符中B7=0。

表1-9 地址设定帧

No	项目	参数	备注
1	地址设定起始符号	F5H	
2	地址号设定	B7=0 , B6-B0=0~127	byte.B6~ byte .B0地址范围0~127
3	预留	B7=0, B6-B1=0, B0 = 操作 命令	B0=1 读地址; B0=0 写地址
4	预留	B7=0, B6-B0=0~127	
5	预留	B7=0, B6-B0=0~127	
6	预留	B7=0, B6-B0=0~127	
7	变化标示 (序列号)	B7=0 , B6-B0=递增	仅仅标示序号
8	校验符	Byte 2-7 XOR	

表1-10 地址设定返回帧

No	项目	参数	备注
1	控制器应答起始符号	F5H	
2	地址值	B7=0,B6-B0=地址号	
3	应答内容	0X5A	
4	校验符	Byte 2-3 XOR	校验符

RS485帧发送时序:

控制中心发送运行参数帧后,驱动器返回应答帧,然后控制中心发送运行命令帧。每个命令帧前必须有一个参数帧,否则驱动器不动作。

装配安装注意事项

安装提示

- 1. 装配之前, 要首先确认驱动卡是否有损坏。
- 2. 驱动卡不要坠落或错误使用,严禁导电物(如金属屑)落入外壳内部,以免内部元器件短路损坏。
- 3. 在有腐蚀气体、有害气体等场所,灰尘、水气的场所使用会成为导致寿命低下的原因。如果现场存在此类物质,请提前检查确认。
- 4. 不要拆下驱动卡的外壳,容易引起破损、故障等问题。

电气安装

- 1. 必须由专业的电气安装人员执行电气安装作业。
- 2. 安装,移动和布线必须在无压情况下操作。
- 3. 电机电缆线与驱动卡进行插拔时,不要用力过猛,以免对接头造成不可估计的损坏。
- 4. 请确认电源(直流)、电压(DC24V±5%)、电动滚筒规格等事项,准确无误地进行连线。
- 5. 一个驱动卡不能带动多台电动滚筒。
- 6. 对照端口说明接线,以防接线错误导致驱动卡损坏。
- 7. 向驱动回路供给的直流电源,请使用绝缘变压器2次构成的类型。
- 8. 电动滚筒和驱动卡之间的配线长度请控制在1m 以内。如果超过1m,可能会导致无法正常动作。
- 9. 电源与驱动卡之间的电线不要超过5米,否则因为降压严重使得驱动卡无法正常运行。

调试和运行

调试

- 1. 首次进行调试之前请先做好检查:
 - 1. 确保布线符合手册说明和电气规定。
 - 2. 确保所有螺栓全部拧紧无松动。
 - 3. 确认接口无松动。
 - 4. 检查所有保护装置。
 - 5. 确保输送机危险区域内无人。

运行

按照说明接好线,打开电源,注意LED灯闪情况,确定无误后继续,如果是内部调速,将旋钮旋至一档,观察是否运行正常,正常后方可调至高速档。

出现意外或故障时的措施

- 1. 立即停止输送机,关掉电源。
- 2. 人员出现意外时, 采取急救措施并拨打急救电话。
- 3. 查看说明书。
- 4. 通知相关人员,并请专业人员排除故障。

保修

非正常使用、人为损坏或拆解不在保修范围之内。

保养和检查

- 1. 刚关掉电源后(30 秒以内),不要接触驱动卡的连接端子,容易因残留电压而引起触电。
- 2. 定期检查驱动卡和导线是否有损坏。